Careers360 Logo
Get CAT-Ready: ARKS Srinivas Reveals Top Prep Secrets!

CAT Relation Between Arc and Chord - Practice Questions & MCQ

Edited By admin | Updated on Oct 04, 2023 04:20 PM | #CAT

Quick Facts

  • 4 Questions around this concept.

Solve by difficulty

If two chords of congruent circles are equal, then the corresponding minor arcs are equal. (True/False)

Concepts Covered - 1

Relation Between Arc and Chord

Property 1: If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

Let's prove this.

We have given a circle C(O,r) in which,  \mathrm{\widehat{A B} \cong \widehat{C D}}.

And we need to prove chord AB = chord CD.

Case I When \mathrm{\widehat{A B}} and \mathrm{\widehat{CD}} are minor arc.

Join OA, OB, OC and OD.

In triangle AOB and COD, we have.

                           OA = OC         (Radii of a circle)

                          OB = OD          (Radii of a circle)

                    ∠ AOB = ∠ COD          \mathrm{\left [ \because \widehat{A B} \cong \widehat{C D} \Rightarrow \mathrm{m}(\widehat{A B})=\mathrm{m}(\widehat{C D}) \right ]}

Therefore,   ∆ AOB ≅ ∆ COD    (by SAS rule)

This gives         AB = CD     (Corresponding parts of congruent triangles)

Case II When \mathrm{\widehat{A B}} and \mathrm{\widehat{CD}} are major arc.

In this case, \mathrm{\widehat{ BA}} and \mathrm{\widehat{DC}} are minor arc

\therefore \quad \widehat{A B} \cong \widehat{C D} \Rightarrow \widehat{B A} \cong \widehat{D C} \Rightarrow B A=D C

\Rightarrow \quad AB=CD

Hence, in both cases, we have AB = CD.

Property 2: If two chords of a circle (or of congruent circles) are equal then their corresponding arcs (semicircular, minor or major) are congruent.

Let's prove this

Let given a circle C(O,r) in which chord AB = chord CD.

We  need to prove \mathrm{\widehat{A B} \cong \widehat{C D}}, where both \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are either semicircular, minor or major arcs.

Case I When AB and CD are diameters

In this case,  \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are semicircles with the same radii.

So, \mathrm{\widehat{A B} \cong \widehat{C D}}

Thus, \mathrm{A B=C D \Rightarrow \widehat{A B} \cong \widehat{C D}}.

Case II When chord AB = chord CD, where   \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are minor arcs.

In triangle AOB and COD, we have.

                           AB = CD         (given)

                          OA = OC          (Radii of a circle)

                          OB = OD          (Radii of a circle)

Therefore,   ∆ AOB ≅ ∆ COD    (by SAS rule)

This gives  ∠ AOB = ∠ COD     (Corresponding parts of congruent triangles)

Now,

\begin{aligned} \angle A O B=\angle C O D & \Rightarrow \mathrm{m}(\widehat{A B})=\mathrm{m}(\widehat{C D}) \\ & \Rightarrow \widehat{A B} \cong \widehat{C D} \end{aligned}

Case II When chord AB = chord CD, where   \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are major arcs.

In this case, \mathrm{\widehat{ BA}} and \mathrm{\widehat{DC}} are minor arc

\begin{aligned} \therefore \quad A B=C D & \Rightarrow B A=D C \\ & \Rightarrow \widehat{B A} \cong \widehat{D C} \\ & \Rightarrow \mathrm{m}(\widehat{B A})=\mathrm{m}(\widehat{D C}) \\ & \Rightarrow 360^{\circ}-\mathrm{m}(\widehat{A B})=360^{\circ}-\mathrm{m}(\widehat{D C}) \\ & \Rightarrow \mathrm{m}(\widehat{A B})=\mathrm{m}(\widehat{C D}) \\ & \Rightarrow \widehat{A B} \cong \widehat{C D} \end{aligned}

Hence, in all the cases A B=C D \Rightarrow \widehat{A B} \cong \widehat{C D}.

Property 2: If two chords of a circle (or of congruent circles) are equal then their corresponding arcs (semicircular, minor or major) are congruent.

Let's prove this

Let given a circle C(O,r) in which chord AB = chord CD.

We  need to prove \mathrm{\widehat{A B} \cong \widehat{C D}}, where both \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are either semicircular, minor or major arcs.

Case I When AB and CD are diameters

In this case,  \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are semicircles with the same radii.

So, \mathrm{\widehat{A B} \cong \widehat{C D}}

Thus, \mathrm{A B=C D \Rightarrow \widehat{A B} \cong \widehat{C D}}.

Case II When chord AB = chord CD, where   \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are minor arcs.

In triangle AOB and COD, we have.

                           AB = CD         (given)

                          OA = OC          (Radii of a circle)

                          OB = OD          (Radii of a circle)

Therefore,   ∆ AOB ≅ ∆ COD    (by SAS rule)

This gives  ∠ AOB = ∠ COD     (Corresponding parts of congruent triangles)

Now,

\begin{aligned} \angle A O B=\angle C O D & \Rightarrow \mathrm{m}(\widehat{A B})=\mathrm{m}(\widehat{C D}) \\ & \Rightarrow \widehat{A B} \cong \widehat{C D} \end{aligned}

Case II When chord AB = chord CD, where   \mathrm{\widehat{A B}} and  \mathrm{\widehat{CD}} are major arcs.

In this case, \mathrm{\widehat{ BA}} and \mathrm{\widehat{DC}} are minor arc

\begin{aligned} \therefore \quad A B=C D & \Rightarrow B A=D C \\ & \Rightarrow \widehat{B A} \cong \widehat{D C} \\ & \Rightarrow \mathrm{m}(\widehat{B A})=\mathrm{m}(\widehat{D C}) \\ & \Rightarrow 360^{\circ}-\mathrm{m}(\widehat{A B})=360^{\circ}-\mathrm{m}(\widehat{D C}) \\ & \Rightarrow \mathrm{m}(\widehat{A B})=\mathrm{m}(\widehat{C D}) \\ & \Rightarrow \widehat{A B} \cong \widehat{C D} \end{aligned}

Hence, in all the cases A B=C D \Rightarrow \widehat{A B} \cong \widehat{C D}.

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top